论文标题

统一扩散模型的潜在空间,并应用于自行车和指导

Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance

论文作者

Wu, Chen Henry, De la Torre, Fernando

论文摘要

扩散模型在生成建模中实现了前所未有的性能。扩散模型的潜在代码通常是逐渐被剥落的样品的序列,而不是更简单的(例如,高斯)的潜在空间,gans,vaes和归一化流量。本文提供了各种扩散模型的潜在空间的替代性高斯公式,以及可演化的DPM编码器,将图像映射到潜在空间中。尽管我们的表述纯粹基于扩散模型的定义,但我们证明了几种有趣的后果。 (1)从经验上,我们观察到一个共同的潜在空间来自两个在相关领域独立训练的扩散模型。鉴于这一发现,我们提出了CycleDiffusion,它使用DPM编码器进行未配对的图像到图像翻译。此外,将循环限制应用于文本对图像扩散模型,我们表明大规模的文本对图像扩散模型可以用作零摄像机图像到图像编辑器。 (2)可以通过基于基于能量的模型来控制统一的插件配方中的潜在代码来指导预训练的扩散模型和gan。使用剪辑模型和面部识别模型作为指导,我们证明了扩散模型比gan具有更好的低密度亚群和个体的覆盖范围。该代码可在https://github.com/chenwu98/cycle-diffusion上公开获取。

Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs. The code is publicly available at https://github.com/ChenWu98/cycle-diffusion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源