论文标题
使用非本地算子的热和波形方程。紧凑的谎言组
Heat and wave type equations with non-local operators, I. Compact Lie groups
论文作者
论文摘要
我们通过使用非本地(时间)差分操作员和在组上作用的非本地(时间)差异操作员(可能是无界的),通过使用非本地(时间)差分运算符和正向左不变型操作员(可能是无界的)来证明存在热和波形方程的分析解决方案。对于加热类型方程,在$ l^q(g)$中给出了$ l^p(g)$中的数据,其中$ 1 <p \ p \ leqslant 2 \ leqslant q <+\ hyfty $。我们还为解决方案提供了一些渐近估计值(大型行为)。给出了一些例子。同样,对于波动类型方程式,我们在$ l^2(g)$的一些合适的Sobolev空间上提供了解决方案。我们还通过研究多期热型方程来补充结果。
We prove existence, uniqueness and give the analytical solution of heat and wave type equations on a compact Lie group $G$ by using a non-local (in time) differential operator and a positive left invariant operator (maybe unbounded) acting on the group. For heat type equations, solutions are given in $L^q(G)$ for data in $L^p(G)$ with $1<p\leqslant 2\leqslant q<+\infty$. We also provide some asymptotic estimates (large-time behavior) for the solutions. Some examples are given. Also, for wave type equations, we give the solution on some suitable Sobolev spaces over $L^2(G)$. We complement our results, by studying a multi-term heat type equation as well.