论文标题
星际灰尘中的氧气和铁:X射线调查
Oxygen and iron in interstellar dust: an X-ray investigation
论文作者
论文摘要
了解星际培养基(ISM)的化学是理解银河和恒星进化的基础。 X射线提供了一种研究沿银河系不同视线线的灰尘化学成分和结晶度的绝佳方法。在这项工作中,我们研究了软X射线带(<1 keV)中星际介质的扩散区域中的灰尘化学。我们使用新计算的X射线尘埃消光截面,从实验室数据获得,以研究氧气和铁L壳的吸收。我们探索了位于银河平面中5个低质量X射线二进制的XMM-Newton和Chandra光谱,并同时对氧气和铁的气体和灰尘特征进行建模。用于本研究的灰尘样品包括具有不同Mg的硅酸盐:Fe比,硫化物,氧化铁和金属铁。大多数灰尘样品都是无定形和结晶晶格构型的。已经使用MIE散射近似值计算了灭绝截面,并假设灰尘尺寸分布。我们发现,富含MG的无定形辉石(MG0.75FE0.25SIO3)代表了大多数X射线源的最大灰尘,平均约为70%。此外,我们发现视线中的灰尘柱密度的约15%是在Fe金属中。我们找不到有力的铁磁化合物,例如Fe3O4或硫化铁(FES,FES2)。我们的研究证实,铁从气相大量消耗到固体中。超过90%的铁在灰尘中。中性氧的耗竭是轻度的,取决于视线在10-20%之间。
Understanding the chemistry of the interstellar medium (ISM) is fundamental for the comprehension of the Galactic and stellar evolution. X-rays provide an excellent way to study the dust chemical composition and crystallinity along different sight-lines in the Galaxy. In this work we study the dust grain chemistry in the diffuse regions of the interstellar medium in the soft X-ray band (<1 keV). We use newly calculated X-ray dust extinction cross sections, obtained from laboratory data, in order to investigate the oxygen K and iron L shell absorption. We explore the XMM-Newton and Chandra spectra of 5 low-mass X-ray binaries located in the Galactic plane, and we model the gas and dust features of oxygen and iron simultaneously. The dust samples used for this study include silicates with different Mg:Fe ratios, sulfides, iron oxides and metallic iron. Most dust samples are in both amorphous and crystalline lattice configuration. The extinction cross sections have been computed using Mie scattering approximation and assuming a power law dust size distribution. We find that the Mg-rich amorphous pyroxene (Mg0.75Fe0.25SiO3) represents the largest fraction of dust towards most of the X-ray sources, about 70% on average. Additionally, we find that ~15% of the dust column density in our lines of sight is in Fe metallic. We do not find strong evidence for ferromagnetic compounds, such as Fe3O4 or iron sulfides (FeS, FeS2). Our study confirms that the iron is heavily depleted from the gas phase into solids; more than 90% of iron is in dust. The depletion of neutral oxygen is mild, between 10-20% depending on the line of sight.