论文标题

用于数据自适应实验选择的跨验证目标最大似然估计器应用于RCT控制臂的增强,并使用外部数据

A Cross-Validated Targeted Maximum Likelihood Estimator for Data-Adaptive Experiment Selection Applied to the Augmentation of RCT Control Arms with External Data

论文作者

Dang, Lauren Eyler, Tarp, Jens Magelund, Abrahamsen, Trine Julie, Kvist, Kajsa, Buse, John B, Petersen, Maya, van der Laan, Mark

论文摘要

使用外部数据增加随机对照试验(RCT)的控制臂可能会增加功率,冒着引入偏见的风险。现有的数据融合估计器通常依赖于严格的假设,或者在存在偏见的情况下可能会降低覆盖范围或权力。将问题构建为数据自适应实验选择之一,潜在的实验仅包括RCT或RCT与不同的候选现实世界数据集结合使用。为了通过最佳的偏置变化权衡选择和分析实验,我们开发了一种新型的实验选择器交叉验证的目标最大似然估计量(ES-CVTMLE)。 ES-CVTMLE使用两个偏差估计值:1)在RCT和组合实验之间控制条件平均结果差异的函数,以及2)平均治疗效应对阴性对照结果(NCO)的估计值。我们在不同的偏置幅度下定义了ES-CVTMLE的渐近分布,并通过Monte Carlo Simulation定义了构建置信区间。在涉及违反识别假设的模拟中,ES-CVTMLE的覆盖范围比测试方法和基于NCO的偏见调整方法和更高的功率要比实施贝叶斯动态借贷方法更好。我们进一步证明了ES-CVTMLE通过重新分析Liraglutide对Liraglutide对血糖控制的影响与领导者试验的作用,从而区分偏见与公正的外部控制的能力。 ES-CVTMLE有可能提高功率,同时为未来的混合RCT RWD研究提供相对强大的推断。

Augmenting the control arm of a randomized controlled trial (RCT) with external data may increase power at the risk of introducing bias. Existing data fusion estimators generally rely on stringent assumptions or may have decreased coverage or power in the presence of bias. Framing the problem as one of data-adaptive experiment selection, potential experiments include the RCT only or the RCT combined with different candidate real-world datasets. To select and analyze the experiment with the optimal bias-variance tradeoff, we develop a novel experiment-selector cross-validated targeted maximum likelihood estimator (ES-CVTMLE). The ES-CVTMLE uses two bias estimates: 1) a function of the difference in conditional mean outcome under control between the RCT and combined experiments and 2) an estimate of the average treatment effect on a negative control outcome (NCO). We define the asymptotic distribution of the ES-CVTMLE under varying magnitudes of bias and construct confidence intervals by Monte Carlo simulation. In simulations involving violations of identification assumptions, the ES-CVTMLE had better coverage than test-then-pool approaches and an NCO-based bias adjustment approach and higher power than one implementation of a Bayesian dynamic borrowing approach. We further demonstrate the ability of the ES-CVTMLE to distinguish biased from unbiased external controls through a re-analysis of the effect of liraglutide on glycemic control from the LEADER trial. The ES-CVTMLE has the potential to improve power while providing relatively robust inference for future hybrid RCT-RWD studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源