论文标题

基于神经网络和可训练的分数矩量的k分布的参数估计

Parameter estimation of the homodyned K distribution based on neural networks and trainable fractional-order moments

论文作者

Byra, Michal, Klimonda, Ziemowit, Jarosik, Piotr

论文摘要

同源K(HK)分布已被广泛用于描述在各个研究领域(例如超声成像或光学)中产生的散射现象。在这项工作中,我们建议一种基于机器学习的方法来估计HK分布参数。我们开发的神经网络可以基于使用分数阶矩计算出的信噪比,偏度和峰度来估算HK分布参数。与以前的方法相比,我们将矩的顺序视为可训练的变量,可以使用后传播算法将其与网络权重进行优化。基于HK分布生成的样品对网络进行培训。获得的结果表明,所提出的方法可用于准确估计HK分布参数。

Homodyned K (HK) distribution has been widely used to describe the scattering phenomena arising in various research fields, such as ultrasound imaging or optics. In this work, we propose a machine learning based approach to the estimation of the HK distribution parameters. We develop neural networks that can estimate the HK distribution parameters based on the signal-to-noise ratio, skewness and kurtosis calculated using fractional-order moments. Compared to the previous approaches, we consider the orders of the moments as trainable variables that can be optimized along with the network weights using the back-propagation algorithm. Networks are trained based on samples generated from the HK distribution. Obtained results demonstrate that the proposed method can be used to accurately estimate the HK distribution parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源