论文标题

旋转眼镜中的自旋扩散需要两个磁性变量,$ \ vec {m} $和$ \ vec {m} $

Spin Diffusion in Spin Glasses Require Two Magnetic Variables, $\vec{M}$ and $\vec{m}$

论文作者

Sun, Chen, Saslow, Wayne M.

论文摘要

实验已经确定,旋转玻璃可以支持稳态旋转电流$ \ vec {j} _ {i} $。但是,自旋玻璃动力学的公认理论允许振荡,但没有稳态自旋电流。 Onsager的不可逆热力学意味着自旋电流与磁化的梯度成正比。但是,我们认为与本地平衡磁化$ \ vec {m} $关联的镁分布函数无法分散,因为它代表$ 10^{23} $变量。因此,我们调用非平衡磁化$ \ vec {m} $,在Spintronics中被称为{\ it spin akemulation}。应用不可逆的热力学理论,我们确实发现它可以预测自旋扩散,我们考虑了该理论的其他实验后果,包括反应性和自由度扩散程度之间的波长依赖性耦合。

Experiment has established that spin-glasses can support a steady-state spin current $\vec{j}_{i}$. However, the accepted theory of spin glass dynamics permits oscillations but no steady-state spin current. Onsager's irreversible thermodynamics implies that the spin current is proportional to the gradient of a magnetization. We argue, however, that the magnon distribution function associated with the local equilibrium magnetization $\vec{M}$ cannot diffuse because it represents $10^{23}$ variables. We therefore invoke the non-equilibrium magnetization $\vec{m}$, which in spintronics is called the {\it spin accumulation}. Applying the theory of irreversible thermodynamics we indeed find that it predicts spin diffusion, and we consider other experimental consequences of the theory, including a wavelength-dependent coupling between the reactive and the diffusive degrees of freedom.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源