论文标题
使用三个生命体征和当前临床特征的Covid-19患者的时间序列的恶化预测
Deterioration Prediction using Time-Series of Three Vital Signs and Current Clinical Features Amongst COVID-19 Patients
论文作者
论文摘要
无法识别的患者恶化会导致高发病率和死亡率。大多数现有的恶化预测模型都需要大量临床信息,通常在医院环境中收集,例如医疗图像或综合实验室测试。这对于远程医疗解决方案来说是不可行的,并突出了基于最小数据的恶化预测模型的差距,这些模型可以在任何诊所,疗养院甚至在患者的家中大规模记录。在这项研究中,我们提出并开发了一个预后模型,该模型可以预测患者在即将到来的3-24小时内是否会恶化。该模型顺序处理常规三合会生命体征:(a)氧饱和度,(b)心率和(c)温度。该模型还提供了基本的患者信息,包括性别,年龄,疫苗接种状况,疫苗接种日期以及肥胖,高血压或糖尿病的状态。我们使用美国纽约州纽约市Nyu Langone Health的37,006名Covid-19患者收集的数据训练和评估该模型。该模型在3-24小时恶化预测下实现了接收器操作特征曲线(AUROC)下方的区域。我们还进行遮挡实验以评估每个输入特征的重要性,其中结果揭示了连续监测生命体征变化的重要性。我们的结果表明,使用最小特征集可以相对容易地使用可穿戴设备和自我报告的患者信息来获得准确的恶化预测的前景。
Unrecognized patient deterioration can lead to high morbidity and mortality. Most existing deterioration prediction models require a large number of clinical information, typically collected in hospital settings, such as medical images or comprehensive laboratory tests. This is infeasible for telehealth solutions and highlights a gap in deterioration prediction models that are based on minimal data, which can be recorded at a large scale in any clinic, nursing home, or even at the patient's home. In this study, we propose and develop a prognostic model that predicts if a patient will experience deterioration in the forthcoming 3-24 hours. The model sequentially processes routine triadic vital signs: (a) oxygen saturation, (b) heart rate, and (c) temperature. The model is also provided with basic patient information, including sex, age, vaccination status, vaccination date, and status of obesity, hypertension, or diabetes. We train and evaluate the model using data collected from 37,006 COVID-19 patients at NYU Langone Health in New York, USA. The model achieves an area under the receiver operating characteristic curve (AUROC) of 0.808-0.880 for 3-24 hour deterioration prediction. We also conduct occlusion experiments to evaluate the importance of each input feature, where the results reveal the significance of continuously monitoring the variations of the vital signs. Our results show the prospect of accurate deterioration forecast using a minimum feature set that can be relatively easily obtained using wearable devices and self-reported patient information.