论文标题

点云检测器的常见腐败鲁棒性:基准和增强

Common Corruption Robustness of Point Cloud Detectors: Benchmark and Enhancement

论文作者

Li, Shuangzhi, Wang, Zhijie, Juefei-Xu, Felix, Guo, Qing, Li, Xingyu, Ma, Lei

论文摘要

通过基于LIDAR的点云通过对象检测在自动驾驶中很重要。尽管在公共基准上达到了高精度,但最先进的探测器可能仍然出错,并且由于雨水,降雨,雪,传感器噪音等在现实世界中的广泛腐败而造成巨大的损失。尽管如此,仍然缺乏大规模的数据集,而多样化的腐败和现实的腐败类型,而导致越来越多的巨大的构成挑战,这是构成巨大的挑战,这是构成巨大的构成构成构成构成构成构成构成构成构成构成构成构成构成构成的巨大腐败类型的。为了减轻挑战并开始进行健壮的点云检测的第一步,我们提出了物理感知的模拟方法,以在不同的现实世界共同腐败下产生降解的点云。然后,对于第一次尝试,我们根据点云检测器的物理意识的常见损坏构建基准,该基准包含1,122,150个示例,其中涵盖了7,481个场景,25种常见的腐败类型和6种严重性。凭借如此新颖的基准,我们对8个包含6个不同检测框架的最先进的检测器进行了广泛的经验研究。因此,我们得到了一些洞察观察,揭示了检测器的脆弱性并指示增强方向。此外,我们进一步研究了基于数据增强和数据降解的现有鲁棒性增强方法的有效性。基准可能是评估点云检测器的新平台,为开发新颖的鲁棒性增强方法打开了一扇门。

Object detection through LiDAR-based point cloud has recently been important in autonomous driving. Although achieving high accuracy on public benchmarks, the state-of-the-art detectors may still go wrong and cause a heavy loss due to the widespread corruptions in the real world like rain, snow, sensor noise, etc. Nevertheless, there is a lack of a large-scale dataset covering diverse scenes and realistic corruption types with different severities to develop practical and robust point cloud detectors, which is challenging due to the heavy collection costs. To alleviate the challenge and start the first step for robust point cloud detection, we propose the physical-aware simulation methods to generate degraded point clouds under different real-world common corruptions. Then, for the first attempt, we construct a benchmark based on the physical-aware common corruptions for point cloud detectors, which contains a total of 1,122,150 examples covering 7,481 scenes, 25 common corruption types, and 6 severities. With such a novel benchmark, we conduct extensive empirical studies on 8 state-of-the-art detectors that contain 6 different detection frameworks. Thus we get several insight observations revealing the vulnerabilities of the detectors and indicating the enhancement directions. Moreover, we further study the effectiveness of existing robustness enhancement methods based on data augmentation and data denoising. The benchmark can potentially be a new platform for evaluating point cloud detectors, opening a door for developing novel robustness enhancement methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源