论文标题

解决离线和在线非马托酮DR-submodular to to inver convex sets的近似性

Resolving the Approximability of Offline and Online Non-monotone DR-Submodular Maximization over General Convex Sets

论文作者

Mualem, Loay, Feldman, Moran

论文摘要

近年来,DR-Submodular连续功能的最大化成为了一个重要的研究领域,在机器学习,通信系统,操作研究和经济学领域中,许多现实世界的应用。由于Vondrák(2013)的不Xibibibibibibibibility,该领域研究中的大多数作品最大化受到下闭凸的限制的约束。但是,Durr等人。 (2021)表明,可以通过证明$ m $的函数(最小$ \ ell _ {\ infty} $ - 任何可行向量的规范的函数,可以绕过这种不XBIMITIOS。鉴于此观察结果,有可能获得最大化DR-Submodular函数的结果,但要受到一般凸集约束,这导致了有关此问题的多项工作。其中的最新是多项式时间$ \ tfrac {1} {4}(1- m)$ - 由于DU(2022)而导致的离线算法近似近似。但是,只有一个子指数时间$ \ tfrac {1} {3 \ sqrt {3}}}(1- m)$ - 近似算法以相应的在线问题而闻名。在这项工作中,我们提供了一个多项式时间在线算法,与$ \ tfrac {1} {4} {4}(1- m)$ - 最新的离线算法的近似。我们还提出了一个不Xibibibibity的结果,表明我们的在线算法和DU(2022)离线算法在强大的意义上都是最佳的。最后,我们研究了算法和DU算法的经验性能(这仅在理论上是在理论上研究的),并表明它们始终优于先前建议的有关收入最大化,位置摘要和典型计划应用的算法。

In recent years, maximization of DR-submodular continuous functions became an important research field, with many real-worlds applications in the domains of machine learning, communication systems, operation research and economics. Most of the works in this field study maximization subject to down-closed convex set constraints due to an inapproximability result by Vondrák (2013). However, Durr et al. (2021) showed that one can bypass this inapproximability by proving approximation ratios that are functions of $m$, the minimum $\ell_{\infty}$-norm of any feasible vector. Given this observation, it is possible to get results for maximizing a DR-submodular function subject to general convex set constraints, which has led to multiple works on this problem. The most recent of which is a polynomial time $\tfrac{1}{4}(1 - m)$-approximation offline algorithm due to Du (2022). However, only a sub-exponential time $\tfrac{1}{3\sqrt{3}}(1 - m)$-approximation algorithm is known for the corresponding online problem. In this work, we present a polynomial time online algorithm matching the $\tfrac{1}{4}(1 - m)$-approximation of the state-of-the-art offline algorithm. We also present an inapproximability result showing that our online algorithm and Du's (2022) offline algorithm are both optimal in a strong sense. Finally, we study the empirical performance of our algorithm and the algorithm of Du (which was only theoretically studied previously), and show that they consistently outperform previously suggested algorithms on revenue maximization, location summarization and quadratic programming applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源