论文标题
RING ++:在稀疏扫描地图上用于全局定位的Roto-Translation不变克
RING++: Roto-translation Invariant Gram for Global Localization on a Sparse Scan Map
论文作者
论文摘要
全球本地化在许多机器人应用中起着至关重要的作用。基于激光雷达的全球本地化使社区的重点以鲁棒性抵抗照明和季节性变化。为了进一步改善在较大的观点差异下的定位,我们提出了RING ++,该环++具有用于位置识别的Roto-Translation不变性表示,以及用于旋转和翻译估计的全局收敛性。通过理论保证,RING ++能够使用带有稀疏扫描的轻量级地图来解决较大的视点差。此外,我们为保留Roto-Translation不变性的表示特征提取器提供了足够的条件,使RING ++成为适用于通用多通道功能的框架。据我们所知,这是第一个无学习的框架,可以解决稀疏扫描地图中全球本地化的所有子任务。对现实世界数据集的验证表明,我们的方法比最新的无学习方法表现出更好的性能,并且具有基于学习的方法的竞争性能。最后,我们将RING ++集成到多机器人/会话大满贯系统中,并在协作应用程序中执行其有效性。
Global localization plays a critical role in many robot applications. LiDAR-based global localization draws the community's focus with its robustness against illumination and seasonal changes. To further improve the localization under large viewpoint differences, we propose RING++ which has roto-translation invariant representation for place recognition, and global convergence for both rotation and translation estimation. With the theoretical guarantee, RING++ is able to address the large viewpoint difference using a lightweight map with sparse scans. In addition, we derive sufficient conditions of feature extractors for the representation preserving the roto-translation invariance, making RING++ a framework applicable to generic multi-channel features. To the best of our knowledge, this is the first learning-free framework to address all subtasks of global localization in the sparse scan map. Validations on real-world datasets show that our approach demonstrates better performance than state-of-the-art learning-free methods, and competitive performance with learning-based methods. Finally, we integrate RING++ into a multi-robot/session SLAM system, performing its effectiveness in collaborative applications.