论文标题

在双曲线空间中保留凸出突出的高斯曲率流量

Volume preserving Gauss curvature flow of convex hypersurfaces in the hyperbolic space

论文作者

Wei, Yong, Yang, Bo, Zhou, Tailong

论文摘要

我们考虑双曲线空间中平滑,闭合和凸出曲面的体积流量$ \ mathbb {h}^{n+1}(n \ geq 2)$,其速度由高斯曲率的任意正力$α$给出的速度。我们证明,如果初始超出表面是凸,则流的平滑解仍然凸,并且在[0,\ infty)$中的所有正时间$ t \中存在。此外,我们采用了Kohlmann的结果,该结果使用双曲线曲率测量量和Alexandrov反射的论点来表明该流量在平滑拓扑中呈指数呈指数呈指数收敛。这可以看作是非本地类型体积保留曲率流的第一个结果,用于双曲线空间中的高空曲面,而初始数据仅需要凸度。

We consider the volume preserving flow of smooth, closed and convex hypersurfaces in the hyperbolic space $\mathbb{H}^{n+1} (n\geq 2)$ with the speed given by arbitrary positive power $α$ of the Gauss curvature. We prove that if the initial hypersurface is convex, then the smooth solution of the flow remains convex and exists for all positive time $t\in [0,\infty)$. Moreover, we apply a result of Kohlmann which characterises the geodesic ball using the hyperbolic curvature measures and an argument of Alexandrov reflection to prove that the flow converges to a geodesic sphere exponentially in the smooth topology. This can be viewed as the first result for non-local type volume preserving curvature flows for hypersurfaces in the hyperbolic space with only convexity required on the initial data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源