论文标题

Thuee系统描述NIST 2020 SRE CTS挑战

THUEE system description for NIST 2020 SRE CTS challenge

论文作者

Zheng, Yu, Peng, Jinghan, Zhao, Miao, Ma, Yufeng, Liu, Min, Ma, Xinyue, Liang, Tianyu, Kong, Tianlong, He, Liang, Xu, Minqiang

论文摘要

本文介绍了NIST 2020说话者识别评估(SRE)对话电话演讲(CTS)挑战的Thuee团队的系统描述。在此评估中,开发了包括RESNET74,RESNET152和REPVGG-B2在内的子系统作为嵌入提取器的开发。我们使用了基于AM-Softmax和AAM-SoftMax的组合损失功能,即CM-SoftMax。我们采用了两期培训策略来进一步提高系统性能。我们将所有单个系统融合为我们的最终提交。我们的方法带来了出色的表现,并在挑战中排名第一。

This paper presents the system description of the THUEE team for the NIST 2020 Speaker Recognition Evaluation (SRE) conversational telephone speech (CTS) challenge. The subsystems including ResNet74, ResNet152, and RepVGG-B2 are developed as speaker embedding extractors in this evaluation. We used combined AM-Softmax and AAM-Softmax based loss functions, namely CM-Softmax. We adopted a two-staged training strategy to further improve system performance. We fused all individual systems as our final submission. Our approach leads to excellent performance and ranks 1st in the challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源