论文标题
矩阵模型,整体多面体和曲折的几何形状
Matrix Models, Integral Polyhedra and Toric Geometry
论文作者
论文摘要
我们建议您研究整体多面体研究的新方法。主要思想是为积分多型的关键组合特性提供一个积分表示或矩阵模型表示。基于矩阵模型DIGRAM技术的众所周知的几何解释,我们构建了一个新的模型,列举了整体多边形的三角形,细分和积分点的数量。这种方法使我们能够从新的角度看待他们的组合学,这是由有关矩阵模型及其集成性的知识所激发的。我们展示了Virasoro约束的类似物如何出现在结果模型中。此外,考虑到已经是一个张量模型,我们将此基质模型自然概括为任意维度的多元化情况。我们还为此获得了Virasoro约束的类似物,并讨论了它们在这些模型的可溶性中的作用。凸多面体的几何形状和感谢您的几何形状之间的深厚连接是这些模型构建的主要参考点。我们对将这种方法应用于Batyrev镜子对的描述的特定方式进行了考虑。所有这些都使我们能够在研究矩阵/张量模型与感谢您品种的几何形状之间的连接研究中提出许多有趣的方向。
We propose to take a look at a new approach to the study of integral polyhedra. The main idea is to give an integral representation, or matrix model representation, for the key combinatorial characteristics of integral polytopes. Based on the well-known geometric interpretations of matrix model digram techniques, we construct a new model that enumerates triangulations, subdivisions, and numbers of integral points of integral polygons. This approach allows us to look at their combinatorics from a new perspective, motivated by knowledge about matrix models and their integrability. We show how analogs of Virasoro constraints appear in the resulting model. Moreover, we make a natural generalization of this matrix model to the case of polytopes of an arbitrary dimension, considering already a tensor model. We also obtain an analogue of Virasoro constraints for it and discuss their role in the solvability of these models. The deep connection between the geometry of convex polyhedra and toric geometry is the main reference point in the construction of these models. We present considerations on specific ways of applying this approach to the description of Batyrev's mirror pairs. All this allows us to formulate many interesting directions in the study of the connection between matrix/tensor models and the geometry of toric varieties.