论文标题
在多功能物联网无线传感器网络中使用多路复用感的多路复用传感的应用程序调度
Application Scheduling with Multiplexed Sensing of Monitoring Points in Multi-purpose IoT Wireless Sensor Networks
论文作者
论文摘要
无线传感器网络(WSN)具有许多应用程序,并且是物联网系统的重要组成部分。 WSN的主要功能是从传感器节点覆盖的特定点收集数据,并将收集的数据传输到远程单元以进行进一步处理。在物联网用例中,WSN基础架构可能需要由许多应用程序共享,这需要安排这些应用程序以时间共享节点和网络资源。在本文中,我们研究了WSN基础架构中的应用程序调度问题。我们专注于应用程序要求在该区域中感知的一组监视点A WSN跨度,并提出了使用多个应用程序请求的监视点的多路复用感应的共享数据方法,从而减少了网络上的感应和通信负载。我们还提出了一种称为GABAS的遗传算法,并考虑了考虑不同标准的WSN基础设施,将应用程序调整到WSN基础设施上。我们进行了广泛的仿真实验,以评估我们的算法并将其与某些标准调度方法进行比较。结果表明,根据MakePAN,周转时间,等待时间和成功的执行率指标,我们提出的方法的表现要比标准调度方法要好得多。我们还观察到,我们的遗传算法在安排这些指标的应用方面非常有效。
Wireless sensor networks (WSNs) have many applications and are an essential part of IoT systems. The primary functionality of a WSN is gathering data from specific points that are covered with sensor nodes and transmitting the collected data to remote units for further processing. In IoT use cases, a WSN infrastructure may need to be shared by many applications, which requires scheduling those applications to time-share the node and network resources. In this paper, we investigate the problem of application scheduling in WSN infrastructures. We focus on the scenarios where applications request a set of monitoring points to be sensed in the region a WSN spans and propose a shared-data approach utilizing multiplexed sensing of monitoring points requested by multiple applications, which reduces sensing and communication load on the network. We also propose a genetic algorithm called GABAS, and three greedy algorithms for scheduling applications onto a WSN infrastructure considering different criteria. We performed extensive simulation experiments to evaluate our algorithms and compare them to some standard scheduling methods. The results show that our proposed methods perform much better than the standard scheduling methods in terms of makespan, turnaround time, waiting time, and successful execution rate metrics. We also observed that our genetic algorithm is very effective in scheduling applications with respect to these metrics.