论文标题
流体动力学熵和二维Euler湍流中的顺序出现
Hydrodynamic Entropy and Emergence of Order in Two-dimensional Euler Turbulence
论文作者
论文摘要
使用数值模拟,我们表明二维(2D)Euler湍流的渐近状态由于小波数模式之间非零的能量传递而显示出大规模的流量结构。这些依赖于初始条件的渐近状态不均衡,它们与Onsager和Kraichnan的预测不同。我们提出``流体动力熵''以量化2D Euler湍流的顺序;我们表明,即使系统隔离而没有耗散,也没有与热浴接触,该熵会随着时间的推移而减小。
Using numerical simulations, we show that the asymptotic states of two-dimensional (2D) Euler turbulence exhibit large-scale flow structures due to nonzero energy transfers among small wavenumber modes. These asymptotic states, which depend on the initial conditions, are out of equilibrium, and they are different from the predictions of Onsager and Kraichnan. We propose ``hydrodynamic entropy'' to quantify order in 2D Euler turbulence; we show that this entropy decreases with time, even though the system is isolated with no dissipation and no contact with a heat bath.