论文标题
Holo-Dex:以沉浸式混合现实的教学敏捷
Holo-Dex: Teaching Dexterity with Immersive Mixed Reality
论文作者
论文摘要
教授机器人的一个根本挑战是为人类教师提供有效的界面,以向机器人展示有用的技能。这种挑战在灵巧的操作中加剧了,在这种操纵中,教授高维,接触率丰富的行为通常需要深奥的远程处理工具。在这项工作中,我们介绍了Holo-Dex,这是一种灵巧操纵的框架,它通过商品VR耳机将老师置于身临其境的混合现实中。耳机上的高保真手部姿势估计器用于对机器人进行静脉操作,并为各种通用灵巧任务收集示范。鉴于这些演示,我们使用强大的功能学习与非参数模仿相结合来训练灵巧的技能。我们对六项常见的灵活任务进行的实验,包括手上旋转,旋转和瓶装,表明Holo-Dex可以在几小时内收集高质量的演示数据和火车技能。最后,我们发现我们的训练技巧可以在训练中未见的物体上表现出概括。 HOLO-DEX的视频可在https://holo-dex.github.io上找到。
A fundamental challenge in teaching robots is to provide an effective interface for human teachers to demonstrate useful skills to a robot. This challenge is exacerbated in dexterous manipulation, where teaching high-dimensional, contact-rich behaviors often require esoteric teleoperation tools. In this work, we present Holo-Dex, a framework for dexterous manipulation that places a teacher in an immersive mixed reality through commodity VR headsets. The high-fidelity hand pose estimator onboard the headset is used to teleoperate the robot and collect demonstrations for a variety of general-purpose dexterous tasks. Given these demonstrations, we use powerful feature learning combined with non-parametric imitation to train dexterous skills. Our experiments on six common dexterous tasks, including in-hand rotation, spinning, and bottle opening, indicate that Holo-Dex can both collect high-quality demonstration data and train skills in a matter of hours. Finally, we find that our trained skills can exhibit generalization on objects not seen in training. Videos of Holo-Dex are available at https://holo-dex.github.io.