论文标题
通过球形图像投影量化多参数MRI的神经胶质瘤分割的U-NET不确定性
Quantifying U-Net Uncertainty in Multi-Parametric MRI-based Glioma Segmentation by Spherical Image Projection
论文作者
论文摘要
平面MRI数据在球形表面上的投影等同于保留全局解剖信息的非线性图像变换。通过将此图像转换过程纳入我们提出的基于球形投影的U-NET(SPU-NET)分割模型设计中,可以从单个MRI获得多个独立的分割预测。最终分割是所有可用结果的平均值,并且可以将变化视为像素不确定性图。引入了不确定性评分,以评估和比较不确定性测量的性能。拟议的SPU-NET模型是根据369例MP-MRI扫描(T1,T1-CE,T2和Flair)实施的。分别训练了三个SPU-NET模型以分割增强肿瘤(ET),肿瘤核(TC)和整个肿瘤(WT)。将SPU-NET模型与(1)具有测试时间增强(TTA)和(2)基于线性缩放的U-NET(LSU-NET)细分模型的经典U-NET模型相比,就两种细分精度(骰子系数,敏感性,特异性和精度)和分割不确定图(不确定图和不确定的评分)而言。开发的SPU-NET模型成功地实现了正确的分割预测(例如肿瘤内部或健康组织内部)和高不确定性的不确定性低的不确定性(例如,肿瘤边界)。该模型可以允许识别U-NET中错过的肿瘤靶标或分割误差。定量地,SPU-NET模型的三个分割靶标(ET/TC/WT)的不确定性得分最高:0.826/0.848/0.936,而使用TTA和0.743/0.702/0.876与LSU-NET(scale facte facte facte facte facte facter(2)相比,使用U-NET使用U-NET进行0.784/0.643/0.872。 SPU-NET在统计学上还取得了更高的骰子系数,突显了提高的分割精度。
The projection of planar MRI data onto a spherical surface is equivalent to a nonlinear image transformation that retains global anatomical information. By incorporating this image transformation process in our proposed spherical projection-based U-Net (SPU-Net) segmentation model design, multiple independent segmentation predictions can be obtained from a single MRI. The final segmentation is the average of all available results, and the variation can be visualized as a pixel-wise uncertainty map. An uncertainty score was introduced to evaluate and compare the performance of uncertainty measurements. The proposed SPU-Net model was implemented on the basis of 369 glioma patients with MP-MRI scans (T1, T1-Ce, T2, and FLAIR). Three SPU-Net models were trained to segment enhancing tumor (ET), tumor core (TC), and whole tumor (WT), respectively. The SPU-Net model was compared with (1) the classic U-Net model with test-time augmentation (TTA) and (2) linear scaling-based U-Net (LSU-Net) segmentation models in terms of both segmentation accuracy (Dice coefficient, sensitivity, specificity, and accuracy) and segmentation uncertainty (uncertainty map and uncertainty score). The developed SPU-Net model successfully achieved low uncertainty for correct segmentation predictions (e.g., tumor interior or healthy tissue interior) and high uncertainty for incorrect results (e.g., tumor boundaries). This model could allow the identification of missed tumor targets or segmentation errors in U-Net. Quantitatively, the SPU-Net model achieved the highest uncertainty scores for three segmentation targets (ET/TC/WT): 0.826/0.848/0.936, compared to 0.784/0.643/0.872 using the U-Net with TTA and 0.743/0.702/0.876 with the LSU-Net (scaling factor = 2). The SPU-Net also achieved statistically significantly higher Dice coefficients, underscoring the improved segmentation accuracy.