论文标题
磁性schrödinger操作员的部分数据逆问题具有低规律性的潜力
Partial data inverse problems for magnetic Schrödinger operators with potentials of low regularity
论文作者
论文摘要
我们为磁性schrödinger操作员的部分数据建立了一个全局唯一性结果,其磁潜在$ w^{1,n} \ cap l^\ infty $以及类$ l^n $的电位。我们的结果是根据势的规律性扩展结果[16]和[25]。结果,我们还显示了$ w^{1,n} \ cap l^\ infty $的对流 - 扩散运算符的部分数据逆边界问题的全局唯一性。
We establish a global uniqueness result for an inverse boundary problem with partial data for the magnetic Schrödinger operator with a magnetic potential of class $W^{1,n}\cap L^\infty$, and an electric potential of class $L^n$. Our result is an extension, in terms of the regularity of the potentials, of the results [16] and [25]. As a consequence, we also show global uniqueness for a partial data inverse boundary problem for the advection-diffusion operator with the advection term of class $W^{1,n}\cap L^\infty$.