论文标题

对生物行为时间序列数据的数据增强的经验评估,并深入学习

Empirical Evaluation of Data Augmentations for Biobehavioral Time Series Data with Deep Learning

论文作者

Yang, Huiyuan, Yu, Han, Sano, Akane

论文摘要

最近,深度学习在许多任务上表现出色。但是,深层模型的出色性能在很大程度上取决于大量培训数据的可用性,这限制了深层模型对各种临床和情感计算任务的广泛适应,因为标记的数据通常非常有限。作为提高数据变异性并因此具有更好概括的深层模型的有效技术,数据增强(DA)是对生物行为时间序列数据深度学习模型成功的关键步骤。但是,各种DAS对具有不同任务和深层模型的不同数据集的有效性被研究用于生物行为时间序列数据。在本文中,我们首先系统地回顾了八种生物行为时间序列数据的基本DA方法,并评估了具有三个骨架的七个数据集的效果。接下来,我们通过设计适用于时间序列数据的新策略体系结构来探索更新的DA技术(即自动增强,随机增强,随机增强,随机增强)。最后,我们试图通过首先总结两个所需的增强属性(具有挑战性和忠实),然后利用两个指标来定量衡量相应的属性,从而回答为什么DA有效(或不存在)的问题,这可以指导我们在搜索更有效的DA,以实现BioBehavioral Time Serize serize serize serize serize serize更有效的DA,通过设计更具挑战性的挑战,但仍然具有忠诚的转换。我们的代码和结果可在链接上找到。

Deep learning has performed remarkably well on many tasks recently. However, the superior performance of deep models relies heavily on the availability of a large number of training data, which limits the wide adaptation of deep models on various clinical and affective computing tasks, as the labeled data are usually very limited. As an effective technique to increase the data variability and thus train deep models with better generalization, data augmentation (DA) is a critical step for the success of deep learning models on biobehavioral time series data. However, the effectiveness of various DAs for different datasets with different tasks and deep models is understudied for biobehavioral time series data. In this paper, we first systematically review eight basic DA methods for biobehavioral time series data, and evaluate the effects on seven datasets with three backbones. Next, we explore adapting more recent DA techniques (i.e., automatic augmentation, random augmentation) to biobehavioral time series data by designing a new policy architecture applicable to time series data. Last, we try to answer the question of why a DA is effective (or not) by first summarizing two desired attributes for augmentations (challenging and faithful), and then utilizing two metrics to quantitatively measure the corresponding attributes, which can guide us in the search for more effective DA for biobehavioral time series data by designing more challenging but still faithful transformations. Our code and results are available at Link.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源