论文标题

随机噪声可能有助于变异量子算法

Stochastic noise can be helpful for variational quantum algorithms

论文作者

Liu, Junyu, Wilde, Frederik, Mele, Antonio Anna, Jin, Xin, Jiang, Liang, Eisert, Jens

论文摘要

对于一阶梯度下降算法,马鞍点构成了至关重要的挑战。在经典机器学习的概念中,例如通过随机梯度下降方法避免使用它们。在这项工作中,我们提供了证据表明,可以通过利用随机性的存在来自然避免使用鞍点问题。我们证明,在数值模拟和量子硬件上可以保证并提供实用示例。我们认为,变分算法的自然随机性可能有益于避免严格的鞍点,即至少具有一个负Hessian特征值的那些鞍点。预计某些水平的射击噪声可能会帮助的这种见解将为近期变异量子算法的概念增添新的视角。

Saddle points constitute a crucial challenge for first-order gradient descent algorithms. In notions of classical machine learning, they are avoided for example by means of stochastic gradient descent methods. In this work, we provide evidence that the saddle points problem can be naturally avoided in variational quantum algorithms by exploiting the presence of stochasticity. We prove convergence guarantees and present practical examples in numerical simulations and on quantum hardware. We argue that the natural stochasticity of variational algorithms can be beneficial for avoiding strict saddle points, i.e., those saddle points with at least one negative Hessian eigenvalue. This insight that some levels of shot noise could help is expected to add a new perspective to notions of near-term variational quantum algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源