论文标题
评估多分辨率卫星图像的对比度自制学习的标签效率
Evaluating the Label Efficiency of Contrastive Self-Supervised Learning for Multi-Resolution Satellite Imagery
论文作者
论文摘要
深层神经网络在遥感图像中的应用通常受到基础真相注释的限制。解决此问题需要从有限的标记数据中有效地概括的模型,从而使我们能够应对更广泛的地球观察任务。该领域的另一个挑战是开发以可变空间分辨率运行的算法,例如,对于在不同尺度上对土地使用进行分类的问题。最近,在遥感域中应用了自我监督的学习来利用易于获取的无标记数据,并被证明可以减少甚至通过监督学习来缩小差距。在本文中,我们通过标签效率的镜头研究自我监督的视觉表示学习,以在多分辨率/多规模卫星图像上进行土地使用分类的任务。我们基准基准从动量对比(MOCO)改编的两种对比度的自我监督方法,并提供了证据表明这些方法可以在下游的下游监督下进行有效执行,而随机初始化的网络无法概括。此外,他们的表现胜过域外的替代方案。我们使用大型FMOW数据集预处理和评估网络,并通过转移到ResisC45数据集进行验证。
The application of deep neural networks to remote sensing imagery is often constrained by the lack of ground-truth annotations. Adressing this issue requires models that generalize efficiently from limited amounts of labeled data, allowing us to tackle a wider range of Earth observation tasks. Another challenge in this domain is developing algorithms that operate at variable spatial resolutions, e.g., for the problem of classifying land use at different scales. Recently, self-supervised learning has been applied in the remote sensing domain to exploit readily-available unlabeled data, and was shown to reduce or even close the gap with supervised learning. In this paper, we study self-supervised visual representation learning through the lens of label efficiency, for the task of land use classification on multi-resolution/multi-scale satellite images. We benchmark two contrastive self-supervised methods adapted from Momentum Contrast (MoCo) and provide evidence that these methods can be perform effectively given little downstream supervision, where randomly initialized networks fail to generalize. Moreover, they outperform out-of-domain pretraining alternatives. We use the large-scale fMoW dataset to pretrain and evaluate the networks, and validate our observations with transfer to the RESISC45 dataset.