论文标题

各向异性Gelfand-Shilov Wave Fronts的传播

Propagation of anisotropic Gelfand-Shilov wave front sets

论文作者

Wahlberg, Patrik

论文摘要

我们展示了与Schwartz内核的线性运算符的各向异性Gelfand-Shilov Wave Front集的繁殖结果,这是Gelfand--Shilov--Shilov-Shilov beurling类型。此各向异性波前集由两个正面参数进行参数,这些参数与空间和频率变量有关。假定操作员的Schwartz内核的各向异性Gelfand--Shilov Wave Front集可以满足图类型标准。结果应用于一类进化方程,该方程将自由粒子的schrödinger方程推广。 Laplacian被由符号定义的部分差分操作员取代,该符号是一个多项式,具有实际系数和秩序至少两个。

We show a result on propagation of the anisotropic Gelfand--Shilov wave front set for linear operators with Schwartz kernel which is a Gelfand--Shilov ultradistribution of Beurling type. This anisotropic wave front set is parametrized by two positive parameters relating the space and frequency variables. The anisotropic Gelfand--Shilov wave front set of the Schwartz kernel of the operator is assumed to satisfy a graph type criterion. The result is applied to a class of evolution equations that generalizes the Schrödinger equation for the free particle. The Laplacian is replaced by a partial differential operator defined by a symbol which is a polynomial with real coefficients and order at least two.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源