论文标题

处方分数$ q $ curvatures问题的紧凑和存在的统一结果

Unified results of compactness and existence for prescribing fractional $Q$-curvatures problem

论文作者

Li, Yan, Tang, Zhongwei, Wang, Heming, Zhou, Ning

论文摘要

在本文中,我们研究了规定标准球上的保形度度的分数$ q $ c $2σ$的问题,其中$ \ sn $,$σ\ in(0,n/2)$和$ n \ geq2 $。紧凑性和存在结果是根据规定的曲率函数$ k $的固定性顺序$β$获得的。利用积分表示和扰动结果,我们开发了一种统一的方法,以在所有$σ\ in(0,n/2)$中的所有$σ\ in [n-2σ,n)$中获得这些结果。这项工作概括了Jin-Li-xiong [Math。安。 369:109--151,2017] $β\ in(n-2σ,n)$。

In this paper we study the problem of prescribing fractional $Q$-curvature of order $2σ$ for a conformal metric on the standard sphere $\Sn$ with $σ\in (0,n/2)$ and $n\geq2$. Compactness and existence results are obtained in terms of the flatness order $β$ of the prescribed curvature function $K$. Making use of integral representations and perturbation result, we develop a unified approach to obtain these results when $β\in [n-2σ,n)$ for all $σ\in (0,n/2)$. This work generalizes the corresponding results of Jin-Li-Xiong [Math. Ann. 369: 109--151, 2017] for $β\in (n-2σ,n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源