论文标题

某些特殊的核尺寸用于某些交叉产品$ {\ rm c^*} $ - 代数

Certain tracially nuclear dimensional for certain crossed product ${\rm C^*}$-algebras

论文作者

Fan, Qingzhai, Wang, Jiahui

论文摘要

令$ω$为一类Unital $ {\ rm c^*} $ - 代数,该代数为Moat $ n $的第二种类型的Tracial核尺寸(或最多具有tracial核尺寸$ n $)。令$ a $为无限的尺寸简单$ {\ rm c^*} $ - 代数,使得$ a $在$ω$中是零散的。然后$ {\ rm t^2dim_ {nuc}}(a)\ leq n $(或$ {\ rm tdim_ {nuc}}}(a)\ leq n $)。作为一个应用程序,让$ a $为无限的简单简单可分离的unital $ {\ rm c^*} $ - 带有$ {\ rm t^2dim_ {nuc}}}(a)\ leq n $(或$ {\ rm tdim_ {nuc}}}(a nuc}}(a a a a))的代数。假设$α:g \ to {\ rm aut}(a)$是$ a $ a $ a $ a $ a $ g $的动作,该$ a $具有Tracial rokhlin属性。然后$ {\ rm t^2dim_ {nuc}}({{{\ rm c^*}(g,a,a,α)})\ leq n $(或$ {\ rm tdim_ {nuc {nuc}} $({{{{\ rm c^*} $({\ rm c^*}(g,g,a,a,a,α)})。

Let $Ω$ be a class of unital ${\rm C^*}$-algebras which have the second type tracial nuclear dimensional at moat $n$ (or have tracial nuclear dimensional at most $n$). Let $A$ be an infinite dimensional unital simple ${\rm C^*}$-algebra such that $A$ is asymptotical tracially in $Ω$. Then ${\rm T^2dim_{nuc}}(A)\leq n$ (or ${\rm Tdim_{nuc}}(A)\leq n$). As an application, let $A$ be an infinite dimensional simple separable amenable unital ${\rm C^*}$-algebra with ${\rm T^2dim_{nuc}}(A)\leq n$ (or ${\rm Tdim_{nuc}}(A)\leq n$). Suppose that $α:G\to {\rm Aut}(A)$ is an action of a finite group $G$ on $A$ which has the tracial Rokhlin property. Then ${\rm T^2dim_{nuc}}({{\rm C^*}(G, A,α)})\leq n$ (or ${\rm Tdim_{nuc}}$ $({{\rm C^*}(G, A,α)})\leq n$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源