论文标题
用于多视图图集群的变分图生成器
Variational Graph Generator for Multi-View Graph Clustering
论文作者
论文摘要
多视图图群集(MGC)方法由于使用图形结构信息的多视图数据爆炸而越来越多地研究。 MGC的关键点是更好地利用特定视图和查看的信息,以多个视图的功能和图表。但是,现有作品具有固有的限制,即他们无法同时使用多个图形和特定视图特征信息的共识图信息。为了解决此问题,我们提出了用于多视图图集群(VGMGC)的变分图生成器。具体而言,提出了一种新型的变分图生成器来提取多个图表之间的共同信息。该发电机基于多个图的先验假设来渗透可靠的变异共识图。然后,提出了一个简单而有效的图形编码器与多视图聚类目标结合使用,以学习用于群集的所需图形嵌入,该图将推断的视图符号符号图和特定于视图特定的图与特征嵌入在一起。最后,理论结果说明了通过使用信息瓶颈原理分析推断共识图的不确定性的不确定性,这表明了VGMGC的合理性。扩展的实验表明,VGMGC胜过SOTA的卓越性能。源代码可在https://github.com/cjpcool/vgmgc上公开获得。
Multi-view graph clustering (MGC) methods are increasingly being studied due to the explosion of multi-view data with graph structural information. The critical point of MGC is to better utilize view-specific and view-common information in features and graphs of multiple views. However, existing works have an inherent limitation that they are unable to concurrently utilize the consensus graph information across multiple graphs and the view-specific feature information. To address this issue, we propose Variational Graph Generator for Multi-View Graph Clustering (VGMGC). Specifically, a novel variational graph generator is proposed to extract common information among multiple graphs. This generator infers a reliable variational consensus graph based on a priori assumption over multiple graphs. Then a simple yet effective graph encoder in conjunction with the multi-view clustering objective is presented to learn the desired graph embeddings for clustering, which embeds the inferred view-common graph and view-specific graphs together with features. Finally, theoretical results illustrate the rationality of the VGMGC by analyzing the uncertainty of the inferred consensus graph with the information bottleneck principle.Extensive experiments demonstrate the superior performance of our VGMGC over SOTAs. The source code is publicly available at https://github.com/cjpcool/VGMGC.