论文标题

通过可再生能源转移基于深钢筋学习的大规模V2G连续充电协调

Transfer Deep Reinforcement Learning-based Large-scale V2G Continuous Charging Coordination with Renewable Energy Sources

论文作者

Zhang, Yubao, Chen, Xin, Zhang, Yuchen

论文摘要

由于电动汽车(EV)的普及以及电动汽车电子的技术进步,已经开发了车辆到网格(V2G)技术和大规模调度算法,以实现高水平的可再生能源和电力网格稳定性。本文提出了一种深入的加固学习方法(DRL)方法,用于使用可再生能源(RES)以V2G模式(RES)在V2G模式下汇总大规模电动汽车的连续充电/放电策略。 DRL协调策略可以有效地优化电动汽车聚合器(EVA)的实时充电/放电能力,并使用EVA和个人EV的限制状态(SOC)限制。与不受控制的充电相比,负载差异减少了97.37 $ \%$,充电成本降低了76.56 $ \%$。 DRL协调策略进一步证明了使用RES和大规模EVA以及复杂的每周时间表的微电网的出色转移学习能力。 DRL协调策略在现实的操作条件下显示了大规模V2G的灵活,适应性和可扩展性能。

Due to the increasing popularity of electric vehicles (EVs) and the technological advancement of EV electronics, the vehicle-to-grid (V2G) technique and large-scale scheduling algorithms have been developed to achieve a high level of renewable energy and power grid stability. This paper proposes a deep reinforcement learning (DRL) method for the continuous charging/discharging coordination strategy in aggregating large-scale EVs in V2G mode with renewable energy sources (RES). The DRL coordination strategy can efficiently optimize the electric vehicle aggregator's (EVA's) real-time charging/discharging power with the state of charge (SOC) constraints of the EVA and the individual EV. Compared with uncontrolled charging, the load variance is reduced by 97.37$\%$ and the charging cost by 76.56$\%$. The DRL coordination strategy further demonstrates outstanding transfer learning ability to microgrids with RES and large-scale EVA, as well as the complicated weekly scheduling. The DRL coordination strategy demonstrates flexible, adaptable, and scalable performance for the large-scale V2G under realistic operating conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源