论文标题

具有坏死核的肿瘤生长模型的存在结果和自由边界极限

Existence result and free boundary limit of a tumor growth model with necrotic core

论文作者

Belmor, Samiha

论文摘要

我们分析了一个交叉扩散方程系统,该系统模拟了血管肿瘤球体的生长。该模型结合了两种非线性扩散效应,退化类型和超级扩散。我们证明了弱解决方案的全球存在,并证明当压力僵硬时,与Hele-Shaw类型的自由边界问题的融合合理。我们还研究了$ l^1- $ lebesgue空间中解决方案的收敛速率。

We analyze a system of cross-diffusion equations that models the growth of an avascular-tumor spheroid. The model incorporates two nonlinear diffusion effects, degeneracy type and super diffusion. We prove the global existence of weak solutions and justify the convergence towards the free boundary problem of the Hele-Shaw type when the pressure gets stiff. We also investigate the convergence rate of the solutions in $L^1-$Lebesgue spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源