论文标题

部分可观测时空混沌系统的无模型预测

Strong form mesh-free $hp$-adaptive solution of linear elasticity problem

论文作者

Jančič, Mitja, Kosec, Gregor

论文摘要

我们提出了针对基于$ HP $适应性搭配的算法的偏微分方程的无网格数值分析。我们的解决方案程序遵循建立良好的迭代溶液溶解型雷德恩范式。求解相依赖于径向函数生成的有限差(RBF-FD),该差异使用支持可变节点密度的前节点定位算法生成的点云。在估计阶段,我们引入了一个隐式解释(IMEX)误差指标,该指标假定该误差与隐式获得的解决方案(来自求解阶段)与使用较高级别近似近似的局部显式重新评估的局部显式重新评估有关。根据IMEX错误指标,修改后的德克萨斯州三步标记策略用于标记$ h $ - ,$ p $ - 或$ hp $ - (DE-)改进的计算节点。最后,在精炼阶段,将节点重新定位,并且该方法的顺序是根据Mark阶段的指令使用增强单元的可变顺序进行局部重新定义的。 首先研究了引入的$ HP $ - 适应方法的性能,以二维峰值问题进行研究,并进一步应用于二维和三维接触问题。我们表明,所提出的IMEX错误指标在所有考虑的情况下都充分捕获了错误的全局行为,并且提出的$ HP $ - 自适应解决方案程序显着胜过非适应性方法。提出的$ HP $ - 适应方法代表了朝着完全自主的数值方法迈出的另一个重要步骤,该方法能够在没有用户干预的情况下解决现实几何形状中的复杂问题。

We present an algorithm for $hp$-adaptive collocation-based mesh-free numerical analysis of partial differential equations. Our solution procedure follows a well-established iterative solve-estimate-mark-refine paradigm. The solve phase relies on the Radial Basis Function-generated Finite Differences (RBF-FD) using point clouds generated by advancing front node positioning algorithm that supports variable node density. In the estimate phase, we introduce an Implicit-Explicit (IMEX) error indicator, which assumes that the error relates to the difference between the implicitly obtained solution (from the solve phase) and a local explicit re-evaluation of the PDE at hand using a higher order approximation. Based on the IMEX error indicator, the modified Texas Three Step marking strategy is used to mark the computational nodes for $h$-, $p$- or $hp$-(de-)refinement. Finally, in the refine phase, nodes are repositioned and the order of the method is locally redefined using the variable order of the augmenting monomials according to the instructions from the mark phase. The performance of the introduced $hp$-adaptive method is first investigated on a two-dimensional Peak problem and further applied to two- and three-dimensional contact problems. We show that the proposed IMEX error indicator adequately captures the global behaviour of the error in all cases considered and that the proposed $hp$-adaptive solution procedure significantly outperforms the non-adaptive approach. The proposed $hp$-adaptive method stands for another important step towards a fully autonomous numerical method capable of solving complex problems in realistic geometries without the user intervention.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源