论文标题

加热内核和Riesz在同质树上的流动laplacian转换

Heat kernel and Riesz transform for the flow Laplacian on homogeneous trees

论文作者

Martini, Alessio, Santagati, Federico, Vallarino, Maria

论文摘要

令$ \ mathbb t_ {q+1} $表示均质树$ q+1 $,标准图距离$ d $和规范流量测量$μ$。度量度量空间$(\ Mathbb t_ {q+1},d,μ)$是指数增长。令$ \ MATHCAL {L} $表示Flow Laplacian,这是$ l^2(μ)$的概率laplacian自我接合。在本说明中,我们证明了与$ \ Mathcal {l} $及其梯度相关的加热内核的加权$ l^1 $估计。结果,我们表明,一阶riesz在$ \ mathbb t_ {q+1} $上与流量laplacian相关的转换在$ l^p(μ)$上限制为$ p \ in(1,2] $ in(1,2] $和弱$(1,1)$的$ p \。

Let $\mathbb T_{q+1}$ denote the homogeneous tree of degree $q+1$ with the standard graph distance $d$ and the canonical flow measure $μ$. The metric measure space $(\mathbb T_{q+1},d,μ)$ is of exponential growth. Let $\mathcal{L}$ denote the flow Laplacian, which is a probabilistic Laplacian self-adjoint on $L^2(μ)$. In this note, we prove some weighted $L^1$-estimates for the heat kernel associated with $\mathcal{L}$ and its gradient. As a consequence, we show that the first order Riesz transform associated with the flow Laplacian on $\mathbb T_{q+1}$ is bounded on $L^p(μ)$, for $p \in (1,2]$ and of weak type $(1,1)$. The latter result was proved in a previous paper by Hebisch and Steger: we give a different proof that might pave the way to further generalizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源