论文标题

HSURF-NET:通过学习超表面的3D点云的正常估计

HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper Surfaces

论文作者

Li, Qing, Liu, Yu-Shen, Cheng, Jin-San, Wang, Cheng, Fang, Yi, Han, Zhizhong

论文摘要

我们提出了一种称为HSURF-NET的新型正常估计方法,该方法可以从具有噪声和密度变化的点云中准确预测正态。先前的方法着重于学习点权重以将邻域拟合到由多项式函数近似的几何表面,并具有预定义的顺序,基于估计的正态。但是,从原始点云中明确地拟合表面的拟合表面是由不适当的多项式订单和异常值引起的过度拟合或不足的问题,这显着限制了现有方法的性能。为了解决这些问题,我们引入了超级表面拟合,以隐式学习超表面,这些表面由多层感知器(MLP)层表示,这些层将点特征作为高维特征空间中的输入和输出表面模式。我们介绍了一个新颖的空间变换模块,该模块由一系列局部聚合层和全局移位层组成,以学习一个最佳特征空间,以及一个相对位置编码模块,以有效地将点云转换为学习的特征空间。我们的模型从无噪声特征中学习了超表面,并直接预测了正常向量。我们以数据驱动的方式共同优化MLP权重和模块参数,以使模型适应各种点的表面模式。实验结果表明,我们的HSURF-NET在合成形状数据集,现实世界室内和室外场景数据集上实现了最先进的性能。代码,数据和验证的模型公开可用。

We propose a novel normal estimation method called HSurf-Net, which can accurately predict normals from point clouds with noise and density variations. Previous methods focus on learning point weights to fit neighborhoods into a geometric surface approximated by a polynomial function with a predefined order, based on which normals are estimated. However, fitting surfaces explicitly from raw point clouds suffers from overfitting or underfitting issues caused by inappropriate polynomial orders and outliers, which significantly limits the performance of existing methods. To address these issues, we introduce hyper surface fitting to implicitly learn hyper surfaces, which are represented by multi-layer perceptron (MLP) layers that take point features as input and output surface patterns in a high dimensional feature space. We introduce a novel space transformation module, which consists of a sequence of local aggregation layers and global shift layers, to learn an optimal feature space, and a relative position encoding module to effectively convert point clouds into the learned feature space. Our model learns hyper surfaces from the noise-less features and directly predicts normal vectors. We jointly optimize the MLP weights and module parameters in a data-driven manner to make the model adaptively find the most suitable surface pattern for various points. Experimental results show that our HSurf-Net achieves the state-of-the-art performance on the synthetic shape dataset, the real-world indoor and outdoor scene datasets. The code, data and pretrained models are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源