论文标题

在Birman-Krein定理上

On the Birman-Krein Theorem

论文作者

Bazao, Vanderléa R., de Oliveira, César R., Diaz, Pablo A.

论文摘要

结果表明,如果$ x $是统一运算符,那么〜$ u $的单数子空间在单位上等同于〜$ ux $(或$ xu $)的单数子空间,而对于每个单位运算符〜$ u $,那么$ x $是身份操作员。换句话说,Birman-Krein定理没有非平凡的概括,其中包括在这种情况下保存单数光谱子空间。

It is shown that if $X$ is a unitary operator so that a singular subspace of~$U$ is unitarily equivalent to a singular subspace of~$UX$ (or $XU$), for each unitary operator~$U$, then $X$ is the identity operator. In other words, there is no nontrivial generalization of Birman-Krein Theorem that includes the preservation of a singular spectral subspace in this context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源