论文标题
局部尾部相关系数应用于极端网络学习
Partial Tail-Correlation Coefficient Applied to Extremal-Network Learning
论文作者
论文摘要
我们提出了一种称为部分尾部相关系数(PTCC)的新型极端依赖度量,类似于经典多元分析中的部分相关系数。我们新系数的构建基于多元规则变化和转换线性代数操作的框架。我们展示了该系数如何允许识别具有随机向量中其他变量的部分不相关的尾巴的变量对。与最近引入的极端有条件独立框架不同,我们的方法需要最小的建模假设,因此可以在探索性分析中使用以学习极端图形模型的结构。与传统的高斯图形模型相似,边缘对应于精确矩阵的非零条目,我们可以利用经典推理方法来获得高维数据,例如具有Laplacian光谱限制的图形套索,以通过PTCC有效地了解了极端网络结构。我们将新方法应用于两个不同数据集(极端河流排放和历史全球货币交换数据)中的极端风险网络,并表明我们可以提取具有有意义领域的解释的有意义的极端结构。
We propose a novel extremal dependence measure called the partial tail-correlation coefficient (PTCC), in analogy to the partial correlation coefficient in classical multivariate analysis. The construction of our new coefficient is based on the framework of multivariate regular variation and transformed-linear algebra operations. We show how this coefficient allows identifying pairs of variables that have partially uncorrelated tails given the other variables in a random vector. Unlike other recently introduced conditional independence frameworks for extremes, our approach requires minimal modeling assumptions and can thus be used in exploratory analyses to learn the structure of extremal graphical models. Similarly to traditional Gaussian graphical models where edges correspond to the non-zero entries of the precision matrix, we can exploit classical inference methods for high-dimensional data, such as the graphical LASSO with Laplacian spectral constraints, to efficiently learn the extremal network structure via the PTCC. We apply our new method to study extreme risk networks in two different datasets (extreme river discharges and historical global currency exchange data) and show that we can extract meaningful extremal structures with meaningful domain-specific interpretations.