论文标题
在(a,b)连接的分数转换的拓扑熵上
On the topological entropy of (a,b)-continued fraction transformations
论文作者
论文摘要
我们研究了与(a,b)连接的分数算法有关的两参数元素的拓扑熵,并证明它在参数空间内的正方形上是恒定的(该正方形的两个顶点对应于经过良好研究的持续分数分数算法)。该证明使用共轭来映射恒定的斜率。我们还提供了实验证据,表明拓扑熵在整个参数空间上是柔性的(即,在范围内采用任何值)。
We study the topological entropy of a two-parameter family of maps related to (a,b)-continued fraction algorithms and prove that it is constant on a square within the parameter space (two vertices of this square correspond to well-studied continued fraction algorithms). The proof uses conjugation to maps of constant slope. We also present experimental evidence that the topological entropy is flexible (i.e., takes any value in a range) on the whole parameter space.