论文标题
超宽带盖ga $ _2 $ o $ _3 $ -ON-SIC MOSFETS
Ultra-Wide Bandgap Ga$_2$O$_3$-on-SiC MOSFETs
论文作者
论文摘要
基于$β$ -GA $ _2 $ o $ _3 $的Ulta Wide Bandgap半导体比当今宽带盖普Power Secicductors具有更高的功率转换性能,效率和更低的制造成本的潜力。但是,对GA $ _2 $ o $ $ _3 $电子产品商业化的最关键挑战正在过热,这会影响设备的性能和可靠性。我们使用Fusion-Bonding方法制造了GA $ _2 $ o $ $ _3 $ _3 $/4H-SIC复合晶片。低温($ \ le $ 600 $^{\ circ} $ c)基于低温(LT)金属有机蒸汽相的外观和设备处理方法是开发出来的,可以在复合机上生长出一个GA $ _2 $ _2 $ _3 $ _3 $ _3 $外部频道的层,并在GA $ $ _2 $ $ o _3中造就了GA $ _2 $ o o o o o o o o o。这种LT方法对于保留复合晶片的结构完整性至关重要。这些LT生长的外在ga $ _2 $ o $ _3 $ MOSFET可提供高热性能(降低了56%的通道温度),高压阻挡功能高达2.45 kV,功率为$ \ sim $ 300 mw/cm $ $^2 $的功率均为$ \ sim $ \ sim $ $ $ $ $ $ $ o $ o $ o。这项工作是在具有高热传递性能的复合基板上制造的多kilovolt同型GA $ _2 $ _2 $ _2 $ _2 $ _3 $的动力MOSFET,该功率可提供最先进的功率密度值,同时运行比本机基板上的凉爽得多。 Thermal characterization and modeling results reveal that a Ga$_2$O$_3$/diamond composite wafer with a reduced Ga$_2$O$_3$ thickness ($\sim$ 1 $μ$m) and thinner bonding interlayer ($<$ 10 nm) can reduce the device thermal impedance to a level lower than today's GaN-on-SiC power switches.
Ulta-wide bandgap semiconductors based on $β$-Ga$_2$O$_3$ offer the potential to achieve higher power switching performance, efficiency, and lower manufacturing cost than today's wide bandgap power semiconductors. However, the most critical challenge to the commercialization of Ga$_2$O$_3$ electronics is overheating, which impacts the device's performance and reliability. We fabricated a Ga$_2$O$_3$/4H-SiC composite wafer using a fusion-bonding method. A low temperature ($\le$ 600 $^{\circ}$C) epitaxy and device processing approach based on low-temperature (LT) metalorganic vapor phase epitaxy is developed to grow a Ga$_2$O$_3$ epitaxial channel layer on the composite wafer and subsequently fabricate into Ga$_2$O$_3$ power MOSFETs. This LT approach is essential to preserve the structural integrity of the composite wafer. These LT-grown epitaxial Ga$_2$O$_3$ MOSFETs deliver high thermal performance (56% reduction in channel temperature), high voltage blocking capabilities up to 2.45 kV, and power figures of merit of $\sim$ 300 MW/cm$^2$, which is a record high for any heterogeneously integrated Ga$_2$O$_3$ devices reported to date. This work is the first realization of multi-kilovolt homoepitaxial Ga$_2$O$_3$ power MOSFETs fabricated on a composite substrate with high heat transfer performance which delivers state-of-the-art power density values while running much cooler than those on native substrates. Thermal characterization and modeling results reveal that a Ga$_2$O$_3$/diamond composite wafer with a reduced Ga$_2$O$_3$ thickness ($\sim$ 1 $μ$m) and thinner bonding interlayer ($<$ 10 nm) can reduce the device thermal impedance to a level lower than today's GaN-on-SiC power switches.