论文标题
CALODVAE:快速热量淋浴模拟的离散变量自动编码器
CaloDVAE : Discrete Variational Autoencoders for Fast Calorimeter Shower Simulation
论文作者
论文摘要
量热计模拟是蒙特卡洛生成最昂贵的部分,用于分析大型强子对撞机(LHC)的实验数据所需的样品。 LHC的高光度升级将需要更多的此类样本。我们提出了一种基于离散变化自动编码器(DVAE)的技术,以模拟电磁热量表中的粒子阵雨。我们讨论了这项工作如何为探索量子退火处理器的方式铺平道路,作为用于生成模拟高能物理数据集的采样设备。
Calorimeter simulation is the most computationally expensive part of Monte Carlo generation of samples necessary for analysis of experimental data at the Large Hadron Collider (LHC). The High-Luminosity upgrade of the LHC would require an even larger amount of such samples. We present a technique based on Discrete Variational Autoencoders (DVAEs) to simulate particle showers in Electromagnetic Calorimeters. We discuss how this work paves the way towards exploration of quantum annealing processors as sampling devices for generation of simulated High Energy Physics datasets.