论文标题

部分可观测时空混沌系统的无模型预测

Polycentric Clustering and Structural Regularization for Source-free Unsupervised Domain Adaptation

论文作者

Guan, Xinyu, Sun, Han, Liu, Ningzhong, Zhou, Huiyu

论文摘要

无源域的适应性(SFDA)旨在通过将知识从预训练的源模型转移到看不见的目标域来解决域的适应问题。大多数现有方法通过生成特征原型将伪标签分配给目标数据。但是,由于源域和目标域之间的数据分布差异以及目标域中的类别失衡,因此生成的特征原型和嘈杂的伪标签存在严重的类偏见。此外,通常会忽略目标域的数据结构,这对于聚类至关重要。在本文中,提出了一个名为PCSR的新型框架,该框架通过一种新型的类内部多中心聚类和结构正则化策略来解决SFDA。首先,提出了类间平衡采样策略,以生成每个类别的代表性特征原型。此外,引入了K-均值聚类以生成目标域中每个类的多个聚类中心,以获得可靠的伪标记。最后,为了增强模型的概括,为目标域引入了结构正则化。在三个UDA基准数据集上进行的广泛实验表明,我们的方法对其他最先进的方法的性能更好或类似,这证明了我们的方法对视觉域适应问题的优越性。

Source-Free Domain Adaptation (SFDA) aims to solve the domain adaptation problem by transferring the knowledge learned from a pre-trained source model to an unseen target domain. Most existing methods assign pseudo-labels to the target data by generating feature prototypes. However, due to the discrepancy in the data distribution between the source domain and the target domain and category imbalance in the target domain, there are severe class biases in the generated feature prototypes and noisy pseudo-labels. Besides, the data structure of the target domain is often ignored, which is crucial for clustering. In this paper, a novel framework named PCSR is proposed to tackle SFDA via a novel intra-class Polycentric Clustering and Structural Regularization strategy. Firstly, an inter-class balanced sampling strategy is proposed to generate representative feature prototypes for each class. Furthermore, k-means clustering is introduced to generate multiple clustering centers for each class in the target domain to obtain robust pseudo-labels. Finally, to enhance the model's generalization, structural regularization is introduced for the target domain. Extensive experiments on three UDA benchmark datasets show that our method performs better or similarly against the other state of the art methods, demonstrating our approach's superiority for visual domain adaptation problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源