论文标题
FEDFM:基于锚的功能匹配,用于联合学习中的数据异质性
FedFM: Anchor-based Feature Matching for Data Heterogeneity in Federated Learning
论文作者
论文摘要
联合学习(FL)的主要挑战之一是客户局部数据分布异质性,这可能会导致跨客户的特征空间不一致。为了解决这个问题,我们提出了一种新颖的方法FEDFM,该方法指导每个客户的功能以匹配共享类别的锚点(在功能空间中的地标)。该方法试图通过对齐每个客户的特征空间来减轻FL中数据异质性的负面影响。此外,我们解决了不同目标功能的挑战,并为FEDFM提供了收敛保证。在FEDFM中,为了减轻类别跨类别的重叠特征空间的现象并提高特征匹配的有效性,我们进一步提出了一个更精确,更有效的功能匹配损失,称为对比度引导(CG),该损失(CG)指导每个局部特征以与相应的锚固匹配,同时远离非对应锚固锚。此外,为了实现更高的效率和灵活性,我们提出了一个称为FedFM-Lite的FEDFM变体,客户与服务器进行交流,同步时间和通信带宽成本较少。通过广泛的实验,我们证明了通过定量和定性比较的FEDFM优于几项作品。 FedFM-Lite可以比最先进的方法获得更好的性能,其沟通成本降低了五到十倍。
One of the key challenges in federated learning (FL) is local data distribution heterogeneity across clients, which may cause inconsistent feature spaces across clients. To address this issue, we propose a novel method FedFM, which guides each client's features to match shared category-wise anchors (landmarks in feature space). This method attempts to mitigate the negative effects of data heterogeneity in FL by aligning each client's feature space. Besides, we tackle the challenge of varying objective function and provide convergence guarantee for FedFM. In FedFM, to mitigate the phenomenon of overlapping feature spaces across categories and enhance the effectiveness of feature matching, we further propose a more precise and effective feature matching loss called contrastive-guiding (CG), which guides each local feature to match with the corresponding anchor while keeping away from non-corresponding anchors. Additionally, to achieve higher efficiency and flexibility, we propose a FedFM variant, called FedFM-Lite, where clients communicate with server with fewer synchronization times and communication bandwidth costs. Through extensive experiments, we demonstrate that FedFM with CG outperforms several works by quantitative and qualitative comparisons. FedFM-Lite can achieve better performance than state-of-the-art methods with five to ten times less communication costs.