论文标题

用于多种计算预算的帕累托感知神经建筑生成

Pareto-aware Neural Architecture Generation for Diverse Computational Budgets

论文作者

Guo, Yong, Chen, Yaofo, Zheng, Yin, Chen, Qi, Zhao, Peilin, Chen, Jian, Huang, Junzhou, Tan, Mingkui

论文摘要

在不同的应用程序/设备产生的不同计算预算下设计可行有效的架构对于在现实世界应用中部署深层模型至关重要。为了实现这一目标,现有方法通常针对每个目标预算执行独立的体系结构搜索过程,这是非常效率但不必要的。更重要的是,这些独立的搜索过程无法彼此共享他们的知识(即良好体系结构的分布),因此通常会导致搜索结果有限。为了解决这些问题,我们提出了一个帕累托感知的神经体系结构生成器(PNAG),该发生器只需要一次培训一次,并通过推理为任何给定的预算动态生产帕累托最佳体系结构。为了培训我们的PNAG,我们通过在不同的预算下共同找到多个帕累托最佳体系结构来学习整个帕累托前沿。这样的联合搜索算法不仅大大降低了整体搜索成本,还可以改善搜索结果。在三个硬件平台(即移动设备,CPU和GPU)上进行了广泛的实验,显示了我们方法比现有方法的优越性。

Designing feasible and effective architectures under diverse computational budgets, incurred by different applications/devices, is essential for deploying deep models in real-world applications. To achieve this goal, existing methods often perform an independent architecture search process for each target budget, which is very inefficient yet unnecessary. More critically, these independent search processes cannot share their learned knowledge (i.e., the distribution of good architectures) with each other and thus often result in limited search results. To address these issues, we propose a Pareto-aware Neural Architecture Generator (PNAG) which only needs to be trained once and dynamically produces the Pareto optimal architecture for any given budget via inference. To train our PNAG, we learn the whole Pareto frontier by jointly finding multiple Pareto optimal architectures under diverse budgets. Such a joint search algorithm not only greatly reduces the overall search cost but also improves the search results. Extensive experiments on three hardware platforms (i.e., mobile device, CPU, and GPU) show the superiority of our method over existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源