论文标题

用于一次性任务概括的抽象到执行轨迹翻译

Abstract-to-Executable Trajectory Translation for One-Shot Task Generalization

论文作者

Tao, Stone, Li, Xiaochen, Mu, Tongzhou, Huang, Zhiao, Qin, Yuzhe, Su, Hao

论文摘要

在复杂的物理环境中培训长胜的机器人政策对于许多应用,例如机器人操作至关重要。但是,学习一项可以推广到看不见任务的政策具有挑战性。在这项工作中,我们建议通过取消计划生成和计划执行来实现一次性任务概括。具体而言,我们的方法分为三个步骤解决复杂的长马操作任务:通过简化几何和物理,生成抽象轨迹并通过抽象到执行的轨迹转换器来构建配对的抽象环境。在抽象环境中,删除了复杂的动态,例如物理操纵,使抽象轨迹更容易生成。但是,这引入了抽象轨迹与实际执行轨迹之间的巨大域间隙,因为抽象轨迹缺乏低级细节,并且与执行轨迹不符合框架。以一种让人联想到语言翻译的方式,我们的方法利用了SEQ-to-seq模型来克服抽象和可执行轨迹之间的较大域间隙,从而使低级策略能够遵循抽象轨迹。具有不同机器人实施方案的各种看不见的长匹马任务的实验结果证明了我们的方法实现单发任务概括的实用性。

Training long-horizon robotic policies in complex physical environments is essential for many applications, such as robotic manipulation. However, learning a policy that can generalize to unseen tasks is challenging. In this work, we propose to achieve one-shot task generalization by decoupling plan generation and plan execution. Specifically, our method solves complex long-horizon tasks in three steps: build a paired abstract environment by simplifying geometry and physics, generate abstract trajectories, and solve the original task by an abstract-to-executable trajectory translator. In the abstract environment, complex dynamics such as physical manipulation are removed, making abstract trajectories easier to generate. However, this introduces a large domain gap between abstract trajectories and the actual executed trajectories as abstract trajectories lack low-level details and are not aligned frame-to-frame with the executed trajectory. In a manner reminiscent of language translation, our approach leverages a seq-to-seq model to overcome the large domain gap between the abstract and executable trajectories, enabling the low-level policy to follow the abstract trajectory. Experimental results on various unseen long-horizon tasks with different robot embodiments demonstrate the practicability of our methods to achieve one-shot task generalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源