论文标题

线性cantor套件的Minkowski总和

The Minkowski sum of linear Cantor sets

论文作者

Hare, Kevin G., Sidorov, Nikita

论文摘要

令$ c $为经典的中部第三大康托套件。众所周知,$ C+C = [0,2] $(Steinhaus,1917)。 (在这里$ + $表示Minkowski sum。)令$ u $为[0,2] $的$ z \ set,其唯一表示为$ z = x + y $,带有$ x,y \ in c $(一组独特)。并不难证明$ \ dim_h u = \ log(2) / \ log(3)$和$ u $本质上看起来像$ 2C $。 假设$ 0,n-1 \在A \ subset \ {0,1,\ dots,n-1 \} $中,将$ c_a = c_a = c_a = c_a {a,n} $作为迭代函数系统吸引子\ [\ [\ {x \ mapsto(x + a) / n:a \}的线性cantor集。 \]我们考虑此类线性cantor集的各种属性。我们的主要重点是$ c_ {a,n}+c_ {a,n} $的结构,具体取决于$ n $和$ a $,以及一组唯一性$ u_a $的属性。

Let $C$ be the classical middle third Cantor set. It is well known that $C+C = [0,2]$ (Steinhaus, 1917). (Here $+$ denotes the Minkowski sum.) Let $U$ be the set of $z \in [0,2]$ which have a unique representation as $z = x + y$ with $x, y \in C$ (the set of uniqueness). It isn't difficult to show that $\dim_H U = \log(2) / \log(3)$ and $U$ essentially looks like $2C$. Assuming $0,n-1 \in A \subset \{0,1,\dots,n-1\}$, define $C_A = C_{A,n}$ as the linear Cantor set which the attractor of the iterated function system \[ \{ x \mapsto (x + a) / n: a \in A \}. \] We consider various properties of such linear Cantor sets. Our main focus will be on the structure of $C_{A,n}+C_{A,n}$ depending on $n$ and $A$ as well as the properties of the set of uniqueness $U_A$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源