论文标题
基于神经网络输出层的分布进行分类的置信度估算
Confidence estimation of classification based on the distribution of the neural network output layer
论文作者
论文摘要
阻止预测模型在现实世界中应用的最常见问题之一是缺乏概括:在基准中测量的模型的准确性确实在未来的数据上重复出现,例如在真实业务的设置中。估计预测模型的信心的方法相对较少。在本文中,我们提出了新的方法,这些方法鉴于神经网络分类模型,估计了该模型产生的特定预测的不确定性。此外,我们提出了一种方法,在给定模型和置信水平下,计算一个将该模型产生的预测分为两个子集的阈值,其中一个符合给定的置信度水平。与其他方法相反,所提出的方法不需要对现有神经网络进行任何更改,因为它们只是在常见神经网络的输出logit层上建立。特别是,这些方法基于与该预测相对应的logit值的分布来推断特定预测的置信度。所提出的方法构成了一种工具,建议在知识提取过程中过滤预测,例如基于Web报道,确定了预测子集,以最大程度地提高召回成本的精度,由于数据的可用性,这并不重要。该方法已在不同的任务上进行了测试,包括关系提取,命名实体识别和图像分类,以显示所达到的准确性的显着提高。
One of the most common problems preventing the application of prediction models in the real world is lack of generalization: The accuracy of models, measured in the benchmark does repeat itself on future data, e.g. in the settings of real business. There is relatively little methods exist that estimate the confidence of prediction models. In this paper, we propose novel methods that, given a neural network classification model, estimate uncertainty of particular predictions generated by this model. Furthermore, we propose a method that, given a model and a confidence level, calculates a threshold that separates prediction generated by this model into two subsets, one of them meets the given confidence level. In contrast to other methods, the proposed methods do not require any changes on existing neural networks, because they simply build on the output logit layer of a common neural network. In particular, the methods infer the confidence of a particular prediction based on the distribution of the logit values corresponding to this prediction. The proposed methods constitute a tool that is recommended for filtering predictions in the process of knowledge extraction, e.g. based on web scrapping, where predictions subsets are identified that maximize the precision on cost of the recall, which is less important due to the availability of data. The method has been tested on different tasks including relation extraction, named entity recognition and image classification to show the significant increase of accuracy achieved.