论文标题
通过条件随机归一化流量的遥感图像的盲级超分辨率
Blind Super-Resolution for Remote Sensing Images via Conditional Stochastic Normalizing Flows
论文作者
论文摘要
真实场景中的遥感图像(RSI)可能会受到多种因素(例如光学模糊,不足采样和其他噪声)的干扰,从而导致复杂而多样化的退化模型。目前,主流SR算法仅考虑一个单一和固定的降解(例如双色插值),并且无法在实际场景中灵活处理复杂的降解。因此,设计一个可以应对各种降解的超分辨率(SR)模型逐渐吸引了研究人员的注意。一些研究首先估计降解内核,然后进行降解自适应SR,但面临估计误差放大的问题,结果中的高频细节不足。尽管基于生成对抗网络(GAN)的盲目SR算法的视觉质量大大提高,但它们仍然患有伪文本,模式崩溃和训练稳定性不佳。在本文中,我们提出了一个基于随机归一化流(BlindSRSNF)的新型盲目SR框架,以解决上述问题。 Blindsrsnf通过明确优化可能性上的变异结合,从而在高分辨率(LR)图像的情况下学习了高分辨率图像空间上的条件概率分布。 Blindsrsnf易于训练,可以生成超过基于GAN的模型的照片真实的SR结果。此外,我们引入了基于对比度学习的退化表示策略,以避免由显式退化估计引起的错误放大问题。综合实验表明,所提出的算法可以在模拟的LR和现实世界中获得具有出色视觉感知质量的SR结果。
Remote sensing images (RSIs) in real scenes may be disturbed by multiple factors such as optical blur, undersampling, and additional noise, resulting in complex and diverse degradation models. At present, the mainstream SR algorithms only consider a single and fixed degradation (such as bicubic interpolation) and cannot flexibly handle complex degradations in real scenes. Therefore, designing a super-resolution (SR) model that can cope with various degradations is gradually attracting the attention of researchers. Some studies first estimate the degradation kernels and then perform degradation-adaptive SR but face the problems of estimation error amplification and insufficient high-frequency details in the results. Although blind SR algorithms based on generative adversarial networks (GAN) have greatly improved visual quality, they still suffer from pseudo-texture, mode collapse, and poor training stability. In this article, we propose a novel blind SR framework based on the stochastic normalizing flow (BlindSRSNF) to address the above problems. BlindSRSNF learns the conditional probability distribution over the high-resolution image space given a low-resolution (LR) image by explicitly optimizing the variational bound on the likelihood. BlindSRSNF is easy to train and can generate photo-realistic SR results that outperform GAN-based models. Besides, we introduce a degradation representation strategy based on contrastive learning to avoid the error amplification problem caused by the explicit degradation estimation. Comprehensive experiments show that the proposed algorithm can obtain SR results with excellent visual perception quality on both simulated LR and real-world RSIs.