论文标题
零速率阈值和新的容量范围,用于列表编码和列表重新发现
Zero-Rate Thresholds and New Capacity Bounds for List-Decoding and List-Recovery
论文作者
论文摘要
在这项工作中,我们考虑了$ q \ geq 2 $的所有整数值的任意$ q $ - ary代码的列表可调节性和列表重新填充性。如果每个半径$ pn $锤击球包含少于$ l $ codeWords,则代码称为$(p,l)_q $ list-list-list-cododion-list-cododecodement; $(p,p,\ ell,l)_q $ - 列表重新恢复性是一种概括,我们将半径$ pn $锤击球放在与侧面长度$ \ ell $的组合矩形的每个点上,并再次规定$ l $ codewords。 我们的主要贡献是精确计算存在的$ p $的最大值$(p,\ ell,l)_q $ - list可恢复的代码,我们称为零速率阈值的数量。用$ p _*$表示这个值,实际上我们表明,校正$ p _*+\ varepsilon $错误的代码必须具有尺寸$ o _ {\ varepsilon}(1)$,即独立于$ n $。这样的结果通常称为``plotkin bound''。为了补充这一点,带有消除构造的标准随机代码表明,存在校正$ p _** - \ varepsilon $错误分数的正速率代码。我们还遵循一个经典的证明模板(通常归因于Elias和Bassalygo),从零利率阈值中得出,用于列表和解码半径之间的其他权衡,以进行列表解码和列表重新发现。 从技术上讲,证明Plotkin的结合归结为证明在$ q $ -simplex上定义的某个函数的SCHUR凸度以及从中得出的单变量函数的凸度。我们指出,较早的论点声称对$ q $ ary list编码的类似结果;但是,我们指出,此较早的证据是有缺陷的。
In this work we consider the list-decodability and list-recoverability of arbitrary $q$-ary codes, for all integer values of $q\geq 2$. A code is called $(p,L)_q$-list-decodable if every radius $pn$ Hamming ball contains less than $L$ codewords; $(p,\ell,L)_q$-list-recoverability is a generalization where we place radius $pn$ Hamming balls on every point of a combinatorial rectangle with side length $\ell$ and again stipulate that there be less than $L$ codewords. Our main contribution is to precisely calculate the maximum value of $p$ for which there exist infinite families of positive rate $(p,\ell,L)_q$-list-recoverable codes, the quantity we call the zero-rate threshold. Denoting this value by $p_*$, we in fact show that codes correcting a $p_*+\varepsilon$ fraction of errors must have size $O_{\varepsilon}(1)$, i.e., independent of $n$. Such a result is typically referred to as a ``Plotkin bound.'' To complement this, a standard random code with expurgation construction shows that there exist positive rate codes correcting a $p_*-\varepsilon$ fraction of errors. We also follow a classical proof template (typically attributed to Elias and Bassalygo) to derive from the zero-rate threshold other tradeoffs between rate and decoding radius for list-decoding and list-recovery. Technically, proving the Plotkin bound boils down to demonstrating the Schur convexity of a certain function defined on the $q$-simplex as well as the convexity of a univariate function derived from it. We remark that an earlier argument claimed similar results for $q$-ary list-decoding; however, we point out that this earlier proof is flawed.