论文标题

术后MRI量(包括纵向采集)中不同自动溶液的切除腔分割的比较

Comparison of different automatic solutions for resection cavity segmentation in postoperative MRI volumes including longitudinal acquisitions

论文作者

Canalini, Luca, Klein, Jan, de Barros, Nuno Pedrosa, Sima, Diana Maria, Miller, Dorothea, Hahn, Horst

论文摘要

在这项工作中,我们比较了五种深度学习解决方案,以自动分割术后MRI中的切除腔。所提出的方法基于相同的3D U-NET体系结构。我们使用术后MRI量的数据集,每件量包括四个MRI序列和相应切除腔的地面真相。用不同的MRI序列训练了四种溶液。此外,还提供了一种使用所有可用序列设计的方法。我们的实验表明,仅使用T1加权对比度增强的MRI序列训练的方法可实现最佳结果,中位骰子指数为0.81。

In this work, we compare five deep learning solutions to automatically segment the resection cavity in postoperative MRI. The proposed methods are based on the same 3D U-Net architecture. We use a dataset of postoperative MRI volumes, each including four MRI sequences and the ground truth of the corresponding resection cavity. Four solutions are trained with a different MRI sequence. Besides, a method designed with all the available sequences is also presented. Our experiments show that the method trained only with the T1 weighted contrast-enhanced MRI sequence achieves the best results, with a median DICE index of 0.81.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源