论文标题

水手:通过洞察到潜在对象表示的锚定锚

SAILOR: Scaling Anchors via Insights into Latent Object Representation

论文作者

Malić, Dušan, Fruhwirth-Reisinger, Christian, Possegger, Horst, Bischof, Horst

论文摘要

LIDAR 3D对象检测模型不可避免地偏向其训练数据集。当探测器在目标数据集上使用时,探测器显然表现出这种偏见,尤其是针对物体大小。但是,由于不同的标签策略或地理位置,对象大小在域之间在域之间变化很大。最新的无监督域适应方法外包方法以克服对象大小偏差。主流大小适应方法利用目标域统计数据与原始无监督的假设相矛盾。我们的新型无监督锚校准方法解决了这一限制。给定对源数据训练的模型,我们以完全无监督的方式估算最佳目标锚。主要思想源于直观的观察:通过改变目标域的锚固尺寸,我们不可避免地会引入噪声,甚至消除有价值的对象提示。受锚大小扰动的潜在对象表示仅在最佳目标锚点下最接近学习的源特征。我们利用这种观察到锚大小优化。我们的实验结果表明,即使没有任何重新培训,我们即使在最新的弱监督规模适应方法相比,我们也获得了竞争成果。此外,我们的锚校准可以与这种现有方法结合使用,使其完全无监督。

LiDAR 3D object detection models are inevitably biased towards their training dataset. The detector clearly exhibits this bias when employed on a target dataset, particularly towards object sizes. However, object sizes vary heavily between domains due to, for instance, different labeling policies or geographical locations. State-of-the-art unsupervised domain adaptation approaches outsource methods to overcome the object size bias. Mainstream size adaptation approaches exploit target domain statistics, contradicting the original unsupervised assumption. Our novel unsupervised anchor calibration method addresses this limitation. Given a model trained on the source data, we estimate the optimal target anchors in a completely unsupervised manner. The main idea stems from an intuitive observation: by varying the anchor sizes for the target domain, we inevitably introduce noise or even remove valuable object cues. The latent object representation, perturbed by the anchor size, is closest to the learned source features only under the optimal target anchors. We leverage this observation for anchor size optimization. Our experimental results show that, without any retraining, we achieve competitive results even compared to state-of-the-art weakly-supervised size adaptation approaches. In addition, our anchor calibration can be combined with such existing methods, making them completely unsupervised.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源