论文标题
Grafics:使用众包RF信号的基于图的基于嵌入的地板识别
GRAFICS: Graph Embedding-based Floor Identification Using Crowdsourced RF Signals
论文作者
论文摘要
我们研究以众包的方式获得的射频(RF)信号样品的地板识别问题,信号样品是高度异构的,大多数样品都缺乏其地板标签。我们提出了Grafics,这是一种基于图的基于嵌入的地板识别系统。 Grafics首先构建了高度通用的两分图模型,一侧具有AP,另一侧具有信号样本。然后,Grafics通过名为E-Line的新型嵌入算法学习信号样品的低维嵌入。 Grafics最终通过基于接近度的分层聚类将节点嵌入以及一些标记样品的嵌入以及嵌入,从而简化每个新样本的地板识别。我们根据两个大规模数据集验证了Grafics的有效性,这些数据集包含来自中国杭州的204座建筑物的RF信号记录和香港的五座建筑物。我们的实验结果表明,Grafics仅使用少数标记的样品(微型和宏观F分数为96%)实现了高度准确的预测性能,并且显着胜过几种最先进的算法(在Micro-F分数中提高了45%的Micro-F分数约为45%)。
We study the problem of floor identification for radiofrequency (RF) signal samples obtained in a crowdsourced manner, where the signal samples are highly heterogeneous and most samples lack their floor labels. We propose GRAFICS, a graph embedding-based floor identification system. GRAFICS first builds a highly versatile bipartite graph model, having APs on one side and signal samples on the other. GRAFICS then learns the low-dimensional embeddings of signal samples via a novel graph embedding algorithm named E-LINE. GRAFICS finally clusters the node embeddings along with the embeddings of a few labeled samples through a proximity-based hierarchical clustering, which eases the floor identification of every new sample. We validate the effectiveness of GRAFICS based on two large-scale datasets that contain RF signal records from 204 buildings in Hangzhou, China, and five buildings in Hong Kong. Our experiment results show that GRAFICS achieves highly accurate prediction performance with only a few labeled samples (96% in both micro- and macro-F scores) and significantly outperforms several state-of-the-art algorithms (by about 45% improvement in micro-F score and 53% in macro-F score).