论文标题

使用基于介入的自我监督学习的数据限制组织分割

Data-Limited Tissue Segmentation using Inpainting-Based Self-Supervised Learning

论文作者

Dominic, Jeffrey, Bhaskhar, Nandita, Desai, Arjun D., Schmidt, Andrew, Rubin, Elka, Gunel, Beliz, Gold, Garry E., Hargreaves, Brian A., Lenchik, Leon, Boutin, Robert, Chaudhari, Akshay S.

论文摘要

尽管有监督的学习能够进行图像分段的高性能,但它需要大量标记的培训数据,这在医学成像领域很难获得。涉及借口任务的自我监督学习(SSL)方法已通过使用未标记的数据进行预处理模型来克服这一要求,这表明了有望。在这项工作中,我们评估了两种SSL方法(基于上下文预测和上下文恢复的基于内部的借口任务)在标签受限的方案中对CT和MRI图像分割的功效,并研究SSL实施选择选择对下游分割性能的效果。我们证明,在标签受限的场景中,对经典的MRI和CT组织分割方法的经典训练且易于实现的SSL分割模型对于临床上与临床相关的指标和传统的DICE评分都可以优于经典监督的MRI和CT组织分割方法。

Although supervised learning has enabled high performance for image segmentation, it requires a large amount of labeled training data, which can be difficult to obtain in the medical imaging field. Self-supervised learning (SSL) methods involving pretext tasks have shown promise in overcoming this requirement by first pretraining models using unlabeled data. In this work, we evaluate the efficacy of two SSL methods (inpainting-based pretext tasks of context prediction and context restoration) for CT and MRI image segmentation in label-limited scenarios, and investigate the effect of implementation design choices for SSL on downstream segmentation performance. We demonstrate that optimally trained and easy-to-implement inpainting-based SSL segmentation models can outperform classically supervised methods for MRI and CT tissue segmentation in label-limited scenarios, for both clinically-relevant metrics and the traditional Dice score.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源