论文标题

贝叶斯协变量依赖性分位数定向无环图形模型,用于个体化推理

Bayesian Covariate-Dependent Quantile Directed Acyclic Graphical Models for Individualized Inference

论文作者

Sagar, Ksheera, Ni, Yang, Baladandayuthapani, Veerabhadran, Bhadra, Anindya

论文摘要

我们提出了一种称为“ Qdagx”的方法,用于贝叶斯协变量依赖的分位数定向的无环形图(DAG),其中这些DAG是个性化的,因为它们依赖于个体特异性的协变量。基于纯观测数据,可以在任何给定的分位数上唯一地识别所提出方法的个性化DAG结构,而没有强有力的假设,例如已知的拓扑排序。为了将提出的方法扩展到大量变量和协变量,我们为模型参数提出了一种新的参数扩展的马蹄,这为我们的方法提供了许多有吸引力的理论和计算益处。通过对条件分位数进行建模,QDAGX克服了DAG的平均回归的共同局限性,这可能对可能性的选择敏感,例如,多元正态性的假设以及先验的选择。我们通过广泛的数值模拟和精确医学的应用来证明QDAGX的性能,该药物渗透了肺癌中患者特异性蛋白 - 蛋白质相互作用网络。

We propose an approach termed ``qDAGx'' for Bayesian covariate-dependent quantile directed acyclic graphs (DAGs) where these DAGs are individualized, in the sense that they depend on individual-specific covariates. The individualized DAG structure of the proposed approach can be uniquely identified at any given quantile, based on purely observational data without strong assumptions such as a known topological ordering. To scale the proposed method to a large number of variables and covariates, we propose for the model parameters a novel parameter expanded horseshoe prior that affords a number of attractive theoretical and computational benefits to our approach. By modeling the conditional quantiles, qDAGx overcomes the common limitations of mean regression for DAGs, which can be sensitive to the choice of likelihood, e.g., an assumption of multivariate normality, as well as to the choice of priors. We demonstrate the performance of qDAGx through extensive numerical simulations and via an application in precision medicine, which infers patient-specific protein--protein interaction networks in lung cancer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源