论文标题

部分可观测时空混沌系统的无模型预测

Combining band-frequency separation and deep neural networks for optoacoustic imaging

论文作者

Gonzalez, Martin G., Vera, Matias, Vega, Leonardo Rey

论文摘要

在本文中,我们考虑了光声断层扫描中图像重建的问题。特别是,我们设计了一种深层的神经结构,可以明确考虑Sinogram中包含的频率信息。这是通过两种方法完成的。首先,我们共同使用线性过滤的后反射法和完全致密的UNET来生成与分离中考虑的每个频带相对应的图像。其次,为了训练模型,我们引入了由三个术语组成的特殊损失函数:(i)分离频段项; (ii)基于正弦图的一致性项和(iii)一个直接测量图像重建质量并利用训练数据集中存在的地面图像存在的术语。数值实验表明,可以通过标准优化方法容易训练的拟议模型提出了通过实践中常用的许多指标量化的出色概括性能。同样,在测试阶段,我们的解决方案具有可比的(在某些情况下)的计算复杂性,这是用于实时实现光声成像的理想特征。

In this paper we consider the problem of image reconstruction in optoacoustic tomography. In particular, we devise a deep neural architecture that can explicitly take into account the band-frequency information contained in the sinogram. This is accomplished by two means. First, we jointly use a linear filtered back-projection method and a fully dense UNet for the generation of the images corresponding to each one of the frequency bands considered in the separation. Secondly, in order to train the model, we introduce a special loss function consisting of three terms: (i) a separating frequency bands term; (ii) a sinogram-based consistency term and (iii) a term that directly measures the quality of image reconstruction and which takes advantage of the presence of ground-truth images present in training dataset. Numerical experiments show that the proposed model, which can be easily trainable by standard optimization methods, presents an excellent generalization performance quantified by a number of metrics commonly used in practice. Also, in the testing phase, our solution has a comparable (in some cases lower) computational complexity, which is a desirable feature for real-time implementation of optoacoustic imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源