论文标题
部分可观测时空混沌系统的无模型预测
VHetNets for AI and AI for VHetNets: An Anomaly Detection Case Study for Ubiquitous IoT
论文作者
论文摘要
垂直异质网络(VHETNET)和人工智能(AI)在6G和超越网络中起关键作用。本文介绍了AI-native vhetnets体系结构,以实现Vhetnets和AI的协同作用,从而在促进自动和智能网络管理的同时支持AI服务的品种。物联网(IoT)中的异常检测是许多领域所需的主要AI服务,包括入侵检测,州监测,设备活动分析,安全监督等。常规的异常检测技术主要将异常检测视为独立的服务,它独立于任何其他网络管理功能,由于资源约束的终点节点和分散的数据分布,由于资源约束的终点节点和分散的数据分布,无法直接在无处不在的IOT中使用。在本文中,我们开发了一个启用AI-native VHETNETS的框架,以为无处不在的IoT提供异常检测服务,其实施得到了智能网络管理功能的帮助。我们首先讨论用于分布式AI模型培训的VHETNET的可能性,以为无处不在的物联网(即AI)提供异常检测服务。之后,我们研究了AI方法在帮助提供VHETNET的自动和智能网络管理功能时的应用,即Vhetnets的AI,其目的是促进有效实施异常检测服务。最后,提出了一项案例研究,以证明拟议的AI-NATIANIT VHETNETS启用异常检测框架的效率和有效性。
Vertical heterogenous networks (VHetNets) and artificial intelligence (AI) play critical roles in 6G and beyond networks. This article presents an AI-native VHetNets architecture to enable the synergy of VHetNets and AI, thereby supporting varieties of AI services while facilitating automatic and intelligent network management. Anomaly detection in Internet of Things (IoT) is a major AI service required by many fields, including intrusion detection, state monitoring, device-activity analysis, security supervision and so on. Conventional anomaly detection technologies mainly consider the anomaly detection as a standalone service that is independent of any other network management functionalities, which cannot be used directly in ubiquitous IoT due to the resource constrained end nodes and decentralized data distribution. In this article, we develop an AI-native VHetNets-enabled framework to provide the anomaly detection service for ubiquitous IoT, whose implementation is assisted by intelligent network management functionalities. We first discuss the possibilities of VHetNets used for distributed AI model training to provide anomaly detection service for ubiquitous IoT, i.e., VHetNets for AI. After that, we study the application of AI approaches in helping provide automatic and intelligent network management functionalities for VHetNets, i.e., AI for VHetNets, whose aim is to facilitate the efficient implementation of anomaly detection service. Finally, a case study is presented to demonstrate the efficiency and effectiveness of the proposed AI-native VHetNets-enabled anomaly detection framework.